Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2105-2116, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198599

RESUMO

Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.

2.
ACS Nano ; 16(10): 16085-16090, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35969666

RESUMO

We synthesize artificial graphene nanoribbons by positioning carbon monoxide molecules on a copper surface to confine its surface state electrons into artificial atoms positioned to emulate the low-energy electronic structure of graphene derivatives. We demonstrate that the dimensionality of artificial graphene can be reduced to one dimension with proper "edge" passivation, with the emergence of an effectively gapped one-dimensional nanoribbon structure. These one-dimensional structures show evidence of topological effects analogous to graphene nanoribbons. Guided by first-principles calculations, we spatially explore robust, zero-dimensional topological states by altering the topological invariants of quasi-one-dimensional artificial graphene nanostructures. The robustness and flexibility of our platform allow us to toggle the topological invariants between trivial and nontrivial on the same nanostructure. Ultimately, we spatially manipulate the states to understand fundamental coupling between adjacent topological states that are finely engineered and simulate complex Hamiltonians.

3.
Nat Commun ; 13(1): 3251, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668085

RESUMO

Conventional phase diagram generation involves experimentation to provide an initial estimate of the set of thermodynamically accessible phases and their boundaries, followed by use of phenomenological models to interpolate between the available experimental data points and extrapolate to experimentally inaccessible regions. Such an approach, combined with high throughput first-principles calculations and data-mining techniques, has led to exhaustive thermodynamic databases (e.g. compatible with the CALPHAD method), albeit focused on the reduced set of phases observed at distinct thermodynamic equilibria. In contrast, materials during their synthesis, operation, or processing, may not reach their thermodynamic equilibrium state but, instead, remain trapped in a local (metastable) free energy minimum, which may exhibit desirable properties. Here, we introduce an automated workflow that integrates first-principles physics and atomistic simulations with machine learning (ML), and high-performance computing to allow rapid exploration of the metastable phases to construct "metastable" phase diagrams for materials far-from-equilibrium. Using carbon as a prototypical system, we demonstrate automated metastable phase diagram construction to map hundreds of metastable states ranging from near equilibrium to far-from-equilibrium (400 meV/atom). We incorporate the free energy calculations into a neural-network-based learning of the equations of state that allows for efficient construction of metastable phase diagrams. We use the metastable phase diagram and identify domains of relative stability and synthesizability of metastable materials. High temperature high pressure experiments using a diamond anvil cell on graphite sample coupled with high-resolution transmission electron microscopy (HRTEM) confirm our metastable phase predictions. In particular, we identify the previously ambiguous structure of n-diamond as a cubic-analog of diaphite-like lonsdaelite phase.

4.
J Am Chem Soc ; 143(41): 17153-17161, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613735

RESUMO

Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.

5.
J Phys Chem A ; 125(19): 4055-4061, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33961423

RESUMO

We compute the electronic structure and optical excitation energies of metal-free and transition-metal phthalocyanines (H2Pc and MPc for M = Fe, Co, Ni, Cu, Zn, Mg) using density functional theory with optimally tuned range-separated hybrid functionals (OT-RSH). We show that the OT-RSH approach provides photoemission spectra in quantitative agreement with experiments as well as optical band gaps within 10% of their experimental values, capturing the interplay of localized d-states and delocalized π-π* states for these organometallic compounds. We examine the tunability of MPcs and H2Pc through fluorination, resulting in quasi-rigid shifts of the molecular orbital energies by up to 0.7 eV. Our comprehensive data set provides a new computational benchmark for gas-phase phthalocyanines, significantly improving upon other density-functional-theory-based approaches.

6.
Science ; 371(6534): 1143-1148, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707261

RESUMO

Synthetic two-dimensional polymorphs of boron, or borophene, have attracted attention because of their anisotropic metallicity, correlated-electron phenomena, and diverse superlattice structures. Although borophene heterostructures have been realized, ordered chemical modification of borophene has not yet been reported. Here, we synthesize "borophane" polymorphs by hydrogenating borophene with atomic hydrogen in ultrahigh vacuum. Through atomic-scale imaging, spectroscopy, and first-principles calculations, the most prevalent borophane polymorph is shown to possess a combination of two-center-two-electron boron-hydrogen and three-center-two-electron boron-hydrogen-boron bonds. Borophane polymorphs are metallic with modified local work functions and can be reversibly returned to pristine borophene through thermal desorption of hydrogen. Hydrogenation also provides chemical passivation because borophane reduces oxidation rates by more than two orders of magnitude after ambient exposure.

7.
ACS Nano ; 14(7): 8887-8893, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32574034

RESUMO

Charge density waves have been intensely studied in inorganic materials such as transition metal dichalcogenides; however their counterpart in organic materials has yet to be explored in detail. Here we report the finding of robust two-dimensional charge density waves in molecular layers formed by α-(BEDT-TTF)2-I3 on a Ag(111) surface. Low-temperature scanning tunneling microscopy images of a multilayer thick α-(BEDT-TTF)2-I3 on a Ag(111) substrate reveal the coexistence of 5a0 × 5a0 and 31a0×31a0 R9° charge density wave patterns commensurate with the underlying molecular lattice at 80 K. Both charge density wave patterns remain in nanosize molecular islands with just a single constituent molecular-layer thickness at 80 and 5 K. Local tunneling spectroscopy measurements reveal the variation of the gap from 244 to 288 meV between the maximum and minimum charge density wave locations. Density functional theory calculations further confirm a vertical positioning of BEDT-TTF molecules in the molecular layer. While the observed charge density wave patterns are stable for the defect sites, they can be reversibly switched for one molecular lattice site by means of inelastic tunneling electron energy transfer with the electron energies exceeding 400 meV using a scanning tunneling microscope manipulation scheme.

8.
Nano Lett ; 20(5): 2986-2992, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32208703

RESUMO

We compute the dielectric properties of freestanding and metal-supported borophene from first-principles time-dependent density functional theory. We find that both the low- and high-energy plasmons of borophene are fully quenched by the presence of a metallic substrate at borophene-metal distances smaller than ≃9 Å. Based on these findings, we derive an electrodynamic model of the interacting, momentum-dependent polarizability for a two-dimensional metal on a model metallic substrate, which quantitatively captures the evolution of the dielectric properties of borophene as a function of metal-borophene distance. Applying this model to a series of metallic substrates, we show that maximizing the plasmon energy detuning between borophene and substrate is the key material descriptor for plasmonic performance.

9.
ACS Nano ; 14(3): 3509-3518, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32078300

RESUMO

Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a ∼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems.

10.
ACS Appl Mater Interfaces ; 11(43): 40543-40550, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31573788

RESUMO

The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, p-type tin sulfide (SnS) on n-type molybdenum disulfide (MoS2) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS2 heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.

11.
Nano Lett ; 19(10): 7124-7129, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545615

RESUMO

We study the impact of organic surface ligands on the electronic structure and electronic band edge energies of quasi-two-dimensional (2D) colloidal cadmium selenide nanoplatelets (NPLs) using density functional theory. We show how control of the ligand and ligand-NPL interface dipoles results in large band edge energy shifts, over a range of 5 eV for common organic ligands with a minor effect on the NPL band gaps. Using a model self-energy to account for the dielectric contrast and an effective mass model of the excitons, we show that the band edge tunability of NPLs together with the strong dependence of the optical band gap on NPL thickness can lead to favorable photochemical and optoelectronic properties.

12.
Phys Rev Lett ; 122(1): 015703, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012714

RESUMO

We study the elastic energy landscape of two-dimensional tin oxide (SnO) monolayers and demonstrate a transition temperature of T_{c}=8.5±1.8 K using ab initio molecular dynamics (MD) that is close to the value of the elastic energy barrier J derived from T=0 K density functional theory calculations. The power spectra of the velocity autocorrelation throughout the MD evolution permit identifying soft phonon modes likely responsible for the structural transformation. The mean atomic displacements obtained from a Bose-Einstein occupation of the phonon modes suggest the existence of a quantum paraelastic phase that could be tuned with charge doping: SnO monolayers could be 2D quantum paraelastic materials with a charge-tunable quantum phase transition.

13.
ACS Nano ; 13(4): 4183-4190, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30848891

RESUMO

Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) - MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunction-specific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.

14.
Nat Commun ; 9(1): 2792, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022022

RESUMO

Hybrid organic-inorganic perovskites are emerging semiconductors for cheap and efficient photovoltaics and light-emitting devices. Different from conventional inorganic semiconductors, hybrid perovskites consist of coexisting organic and inorganic sub-lattices, which present disparate atomic masses and bond strengths. The nanoscopic interpenetration of these disparate components, which lack strong electronic and vibrational coupling, presents fundamental challenges to the understanding of charge and heat dissipation. Here we study phonon population and equilibration processes in methylammonium lead iodide (MAPbI3) by transiently probing the vibrational modes of the organic sub-lattice following above-bandgap optical excitation. We observe inter-sub-lattice thermal equilibration on timescales ranging from hundreds of picoseconds to a couple of nanoseconds. As supported by a two-temperature model based on first-principles calculations, the slow thermal equilibration is attributable to the sequential phonon populations of the inorganic and organic sub-lattices, respectively. The observed long-lasting thermal non-equilibrium offers insights into thermal transport and heat management of the emergent hybrid material class.

15.
Nat Commun ; 9(1): 2019, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789666

RESUMO

Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.

16.
Phys Rev Lett ; 119(13): 136602, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341683

RESUMO

We compute the transient dynamics of phonons in contact with high energy "hot" charge carriers in 12 polar and nonpolar semiconductors, using a first-principles Boltzmann transport framework. For most materials, we find that the decay in electronic temperature departs significantly from a single-exponential model at times ranging from 1 to 15 ps after electronic excitation, a phenomenon concomitant with the appearance of nonthermal vibrational modes. We demonstrate that these effects result from slow thermalization within the phonon subsystem, caused by the large heterogeneity in the time scales of electron-phonon and phonon-phonon interactions in these materials. We propose a generalized two-temperature model accounting for phonon thermalization as a limiting step of electron-phonon thermalization, which captures the full thermal relaxation of hot electrons and holes in semiconductors. A direct consequence of our findings is that, for semiconductors, information about the spectral distribution of electron-phonon and phonon-phonon coupling can be extracted from the multiexponential behavior of the electronic temperature.

17.
J Am Chem Soc ; 138(49): 16159-16164, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960303

RESUMO

The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si-Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si-Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si-Si bond is ruptured using an applied voltage. We investigate this voltage induced Si-Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si-Si bond rupture.

18.
J Am Chem Soc ; 138(35): 11109-12, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27518932

RESUMO

We report measurements of electron transfer rates for four isoenergetic donor-acceptor pairs comprising a molecular electron acceptor, methylviologen (MV), and morphology-controlled colloidal semiconductor nanoparticles of CdSe. The four nanoparticles include a spherical quantum dot (QD) and three differing lateral areas of 4-monolayer-thick nanoplatelets (NPLs), each with a 2.42 eV energy gap. As such, the measurements, performed via ultrafast photoluminescence, relate the dependence of charge transfer rate on the spatial extent of the initial electron-hole pair wave function explicitly, which we show for the first time to be related to surface area in this regime that is intermediate between homogeneous and heterogeneous charge transfer as well as 2D to 0D electron transfer. The observed nonlinear dependence of rate with surface area is attributed to exciton delocalization within each structure, which we show via temperature-dependent absorption measurements remains constant.

19.
Nano Lett ; 16(4): 2603-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26964012

RESUMO

We demonstrate that rectification ratios (RR) of ≳250 (≳1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on C60 on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu-hybridized metallic C60. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects.

20.
Nano Lett ; 15(7): 4498-503, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26066095

RESUMO

Recent experiments have shown that transport properties of molecular-scale devices can be reversibly altered by the surrounding solvent. Here, we use a combination of first-principles calculations and experiment to explain this change in transport properties through a shift in the local electrostatic potential at the junction caused by nearby conducting and solvent molecules chemically bound to the electrodes. This effect is found to alter the conductance of 4,4'-bipyridine-gold junctions by more than 50%. Moreover, we develop a general electrostatic model that quantitatively relates the conductance and dipoles associated with the bound solvent and conducting molecules. Our work shows that solvent-induced effects can be used to control charge and energy transport at molecular-scale interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...